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Abstract 

This paper describes Mentat, an object- 
oriented macro data-flow system. The 
objective of Mentat is to provide an easy-to- 
use, transparent mechanism to  exploit 
parallelism. Mentat meets these objectives by 
combining a data-driven computation model, 
the macro data-flow model, with the object- 
oriented programming paradigm. In this 
paper we provide a high-level view of Mentat 
including the macro data-flow model, 
Mentat’s graph represen tation mechanism 
called future lists, the Mentat programming 
language, the Mentat virtual machine, and the 
status of the implementation of a prototype 
Mentat system. 

1. Introduction 

would: I )  support high degrees of parallelism, 
2) not require a complex c r  centralized control 
mechanism, and 3) make it easy to program 
distributed and parallel applications. The 
primary innovations of Mentat are threefold. 
First. we have combined a data-driven 
computation model with the object-oriented 
programming paradigm. Second, we have 
developed a method for representing program 
graphs that supports dynamic graphs and 
permits decentralized control. Third, we have 
developed a mechanism transparent t o  the 
programmer that automatically detects da t a  
flow at run-time and constructs dynamic 
program graphs for programs written in a 
sequential object-oriented language. 

In this paper we present a high level view 
of the Mentat system and discuss preliminary 

In recent years, there has been an results and progress made to date. In Section 
increased interest in exploiting new 2 the principle features of the Mentat design 
architectures that  offer higher performance via are discussed: the macro data-flow model of 
parallelism. The new architectures include computation, future lists, and the Mentat  
distributed systems such as those built around programming language. An example is 
wide-band local networks, multicomputer presented to  illustrate how data  flow is 
systems such as hypercubes [l], and automatically detected at run-time. Section 3 
multiprocessor systems such as the Encore discusses an abstract view of the system 
Multimax [2] and the Balance Sequent [3]. architecture. Section 4 discusses the Mentat  
While the hardware capabilities of these virtual machine that  has been constructed and 
systems have increased significantly, the preliminary results obtained by executing 
software methodologies needed to  program Gaussian elimination on the machine. Section 
them have not advanced as rapidly. 5 contains a summary and discusses the future 

This paper describes an object-oriented, direction of research. 
macro data-flow system, called Mentat. The 
objective of Mentat is t o  provide an easy-to- 2. Mentat Overview 
use, transparent mechanism to  exploit In this section we briefly present the 
parallelism. Toward this end we formulated macro data-flow model, the model of 
three major design goals. The Mentat system computation upon which Mentat is based. We 

then present futures and future lists, the 
A Thii work waa partially supported by NASA Contract graph representation technique used by 

Mentat, and describe how program objects are 
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mapped onto macro data-flow actors. The 
programming language used to construct 
Mentat programs is an extended C++ [4]. 
The aspects of the Mentat language that 
distinguish it from C++ are discussed. 

2.1. Macro Data Flow 
To satisfy the design goals of Mentat, we 

needed a model of computation that would 
support a n  appropriate degree of parallelism 
and not require a complex control mechanism. 
The data-flow model [5-10! was initially 
examined because of the high degrees of 
parallelism that  can be easily achieved and 
because of the intuitive ease with which it 
maps onto message passing systems. However, 
the traditional data-flow model's 
shortcomings, small computation granularity 
(11,121 and determinism, quickly became 
apparent. These two shortcomings led us to 
propose the macro data-flow model as an 
alternative to  the traditional data-flow model. 

The macro data-flow model 113-151 is an 
extended data-flow model with three principle 
differences. First, the granularity of the 
actors is considerably larger. This provides 
the flexibility to ch'oose an appropriate degree 
of parallelism. Second, some actors can 
maintain state information between firings. 
These actors are called persistent  actors. 
Persistent actors provide an effective way to  
model side effects and non-determinism. 
Third, the structure of macro data-flow 
program graphs is not fixed at compile time. 
Instead, graphs can grow by the run-time 
elaboration of graph nodes into arbitrary 
subgraphs. 

Macro  uctors are large-grain actors that  
perform high-level functions such as Gaussian 
elimination or FFT instead of individual 
machine instructions. The important 
characteristic of macro actors is t ha t  they are 
sufficiently computationally intensive, i.e., 
large grain. How computationally intensive is 
sufficient depends on the speed and latency of 
the communication channels. If the 
communication channels are relatively slow, 
then very large grains of computation are 

required. If the communication channels are 
very fast, smaller grains may suffice. 

Some of the macro actors are regular 
uctors. They are the same as actors in the 
traditional data-flow model. Specifically, all 
regular actors of a given type are functionally 
equivalent. A regular actor is enabled and 
may execute when all its input tokens are 
available. I t  performs some computation, 
generating output tokens that depend only on 
its input tokens. It may maintain internal 
state information during the course of a single 
execution. Information is saved during the 
performance of a function in much the same 
manner that scratch registers are used during 
a hardware multiply. However, no state 
information is preserved from one execution to 
another; they are pure functions. 

Some macro actors are persistent  actors.  
A persistent actor maintains state information 
that is preserved from one execution t o  the 
next. Hence the output tokens generated by a 
persistent actor during different executions are 
not necessarily the same for the same input 
tokens. Since different instances of a 
particular persistent actor type can be in 
different internal states, they are not identical. 

A macro data-flow graph is a high-level 
view of a program. Nodes in this graph are 
macro actors. Hereafter, by actors, we mean 
macro actors. There is an arc from one actor 
to another when there is data  dependency 
between them. However, by providing 
persistent actors, arcs are no longer the only 
way t o  specify data  dependencies between 
computation primitives carried out by the 
system. Persistent actors provide us with a 
way to model information transfer between 
actors in different programs. The concept of 
persistent actors is similar t o  that of monitors 
[IS! and resource managers L17,. 

2.2. Program Graphs and Future Lists 
In all systems based on the data-flow 

model of computation some mechanism is 
needed to  represent program graphs and to 
control their execution. Traditional data-flow 
systems are either static or dynamic .%lo. 



In static systems the topology of the data-flow 
graph, and hence the execution pattern, is 
fixed at compile time. Dynamic systems allow 
multiple copies of a particular subgraph to be 
instantiated at run-time, e.g., multiple loop 
iterations or recursion. Thus, in a dynamic 
system multiple instances of the same 
subgraph may be executing concurrently. The 
dynamic instantiation of subgraphs is often 
implemented by labeling tokens with iteration 
or instance information. However, in both 
static and dynamic systems, the overall 
topology of each data-flow graph is fixed and 
is generated at compile time. This approach is 
adequate for traditional data-flow programs 
because each actor forwards its output tokens 
to a predetermined set of actors. 

When designing the program graph 
representation and control scheme for Mentat 
we looked for a mechanism that would 
support: 1) decentralized control, 2) context- 
independence, and 3) dynamic binding and 
elaboration of vertices into nested subgraphs. 
Decentralized control is important in order t o  
avoid the bottleneck a centralized control 
point would create. However, an overly 
complex distributed control can also place a 
heavy burden on the interconnection network, 
as well as the local hosts. We wanted a fairly 
simple decentralized scheme in which program 
graphs need not be fully replicated, and 
program subgraphs could be scheduled for 
remote execution without requiring any 
further control by the scheduling agent. For 
example, host A should be able to schedule 
subgraph G on host B and then be 
unconcerned as t o  how or where host B 
chooses to  execute the subgraph G. The 
graph representation and control scheme 
should also allow actors to execute in a 
context-independent manner: actors need not 
be aware of from whom their arguments 
come, or to where their results are to  be sent. 
This contrasts with systems and languages 
such as Occam '18 or CSP 119' in which 
entities are fully aware of their 
com munication partners. Context- 
independence lets actors be more readily 

reusable. 
Program graphs with static topologies 

are inadequate for macro data-flow systems 
and object-oriented languages for three 
reasons. The first reason is that  macro data- 
flow actors may be persistent and unbound a t  
compile time. Each instance of a persistent 
actor must be differentiated from all other 
instances, and it may not be possible to know 
until run time which instance of a persistent 
actor is used by the program. Therefore, it is 
not possible to  associate each node of the 
graph with a particular instance of the 
required actor. Enumerating all possible 
instances is not feasible because the instance 
actually used may not exist a t  compile or load 
time. 

The second reason that  static topologies 
are inadequate follows from our use of the 
object-oriented paradigm. Static topology 
implies that  the types of objects can be 
determined at compile time so that  the 
subgraphs that  implement their function can 
be included in the program graph. However, in 
object-oriented languages, i t  will often not be 
possible to  know even the type of object in 
use. For instance, in Smalltalk [20], we know 
only that the object supports some method. 
Exactly how the method is implemented, Le., 
its subgraph, cannot be determined until run- 
time when its type is known. Thus we must 
be able to delay the binding of subgraphs for 
method implementation until run-time. 
Providing dynamic graph elaboration of 
actors into subgraphs satisfies this need. 

The third reason is that  when the 
topology of the graph is static the granularity 
of computation is reduced, and the 
performance will suffer. To  see why the 
granularity is reduced we examine how control 
is performed in static graphs. Certain actors 
in the program graph, called c o n t r o l  actors, 
determine a t  run-time the actual execution 
pattern for the graph, e.g.. which subgraphs 
are executed, and how many loop iterations or 
recursive calls are invoked. Examples of 
control actors include greater than, less than. 
equal to, switches, and merges. If static graphs 



are used we must use control actors to 
determine the actual execution pattern. 
Control actors have very small granularity, 
often with only a single instruction. There 
can be many control actors even for simple 
operations such as unrolling a loop or 
performing conditional and case statements. 
Further, we must pay the communication and 
scheduling overhead for each control actor 
executed just as we do for larger grain actors. 
We can eliminate much of the control 
overhead by moving the control of subgraph 
selection and unrolling into actors and by 
allowing the actors to construct subgraphs at 
run-time that  reflect the effects of performing 
the control function internally. 

To represent program graphs that satisfy 
our goals of decentralized control, context 
independence, and dynamic elaboration with 
delayed binding, Mentat introduces a new 
implementation technique for macro data-flow 
called futures and future lists. Each actor 
receives a list of futures with its input tokens. 
The list of futures describes what happens 
after the actor has completed its computation. 
It is a set of directed data-flow graphs for 
which the actor is the greatest common 
ancestor. Each future in the list of futures 
describes a directed graph tha t  corresponds to  
a particular outgoing arc from the actor. A 
future fist is a list of futures. Mentat futures 
should not be confused with Multilisp futures 
1211. Futures are similar in concept to 
continuations [22, 231. Unlike a Scheme 
continuation, which specifies an ordered 
sequence of events, a future describes a 
directed graph with many possible parallel 
paths. 

Each future has two components, an 
arc-instance and a future list. Each 
arcjnstance describes an arc between two 
nodes in a subgraph. Since the source is 
implicit, the arcjnstance is the name of a 
destination node that  is t o  receive a copy of 
the output token. In particular the 
arcinstance contains information about which 
instance of the destination actor is to be used 
and to  which input of that actor the arc is 

connected. Because the same subgraph may 
be used many times, possibly concurrently, 
the arcjnstance also contains a computation 
tag that  specifies which instantiation of the 
graph the token is for. Computation tags are 
similar to token colorings IS]. In addition to 
the arcjnstance,  each future also contains a 
future list. 

futurelist  == future 
future futurelist  I 
passive 1 E 

future -- -- (arcjnstance futurel is t )  

Lpon completion of the the actor 
computation, an output token containing the 
result and the appropriate future list is sent t o  
each arcinstance named in each future of the 
actor's future list. When an actor requires 
two or more tokens, all but one of the received 
future lists are redundant. The use of a 
passive future list in a message indicates t ha t  
some other token to  the actor carries the 
future list for the actor. Passive future lists 
are usually short. 

Figure 1 illustrates the correspondence 
between a future list and a portion of a 
program graph. A receives the following 
future list: 

( < B ,  op l , a rg l>  ( < D ,  opl ,argl> E)) 
(<C, op l , a rg l>  (<D,  opl,arg2> E ) )  

A sends a copy of its results t o  
<B,opl,argl> and <C,opl ,argl>.  B 
receives a future list of (<D,opl ,argl>  e), 
and C receives a future list of (<D,opl,argZ> 
e). B and C,  upon completion, send their 
results t o  D. Beyond D the future is not 

n 

Figure 1. Correspondence to Graphs 



specified. 
An actor may construct new future lists, 

augment its own future list, and s tar t  new 
subgraphs with the constructed future lists, 
The new subgraph that  results from these 
operations is called the elaborated subgraph of 
the actor. The elaboration into subgraphs is 
completely hidden from users of the actor. 
The elaborated subgraph of an operation is 
not necessarily the same every time the 
operation is executed. 

Elaboration of the program graph can be 
accomplished in one of two ways. First? an 
actor can construct a future list that  consists 
of the specification of the elaborated subgraph 
and the current future list. Its results are 
forwarded to the elaborated subgraph, and the 
results of the elaborated subgraph are 
forwarded to  its future. The second method 
involves the construction of a new elaborated 
subgraph in which the output of the new 
subgraph is sent to the current future list. The 
new elaborated subgraph may include initial 
tokens on the arcs. The initial tokens are 
provided by the constructing node. 

The use of future lists as a graph 
description mechanism allows graph control to 
be completely decentralized. Each actor 
receives enough of the program graph to 
continue the computation. There is no need 
to  coordinate the execution of separate 
subgraphs, and their execution may proceed 
independently. Furthermore, it is not 
necessary for the entire program graph to  be 
generated a t  compile time. Indeed, the 
structure of the graph is only implied, and 
changes as actors modify their future lists. 

Future lists can also be used to  provide 
alternative paths of execution in the event 
that  special conditions arise. For example, 
suppose that there is a database server actor 
and the actor is passed several future lists. 
The first is used after the successful 
completion of the database operation. The 
second is used for recovery if the database 
operation fails. The third is used if a security 
violation is detected. Each of the future lists 
represents a subgraph to be invoked by the 

database server on behalf of the caller when 
the corresponding condition is true a t  
completion. Invocation of a subgraph is 
equivalent to sending tokens to the source 
nodes of the subgraph and sending the future 
lists that  define the subgraph with the tokens. 

2.3. Mapping Objects to Macro Data 
Flow 

An object-oriented approach to software 
design and impiementation provides the ideal 
support for the design and development of 
macro data-flow programs. In Mentat, macro 
actors are realized as external operations of 
Mentat objects. This section discusses the 
relationship between objects and actors, the 
naming of objects and actors, and the 
construction of future lists. 

2.3.1. Objects, Actors, and Tokens 
Before describing Mentat objects, we 

must differentiate between independent and 
contained objects [24). Independent objects are 
objects t ha t  have disjoint address spaces. 
Contained objects do not have disjoint address 
spaces. An independent object may contain 
many contained objects. Contained objects 
may communicate with one another and with 
the independent object containing them using 
shared memory via pointers or the stack. 
Independent objects may communicate with 
one another only via messages. Thus, if 
message passing is cheap, all objects should be 
independent objects. If message passing is 
expensive, only computationally complex 
objects should be independent. Mentat 
permits both independent objects and 
contained objects. However. objects declared 
as Mentat objects are independent objects. 

Each instance of a Mentat object consists 
of four components: a name. a representation 
of the data  stored in the object. a set of 
externally visible operations, and an 
independent thread of control. The set of 
externally visible operations is the object’s 
interface. The actual implementation of an 
operation frequently makes use of other 
objects and operations. How the operations 



are performed, either serially or in parallel, 
what other objects are used, and the internal 
representation of data  structures are not 
visible to any outside object. 

In Mentat, macro data-flow actors are 
an abstraction implemented by the operations 
of objects. For example, a n  encryption object 
would have a single operation that requires 
two parameters, text and key. It implements 
a single actor with two input arcs, one for 
each parameter. A queue object may have five 
operations: full, empty, clear. enqueue, and 
dequeue, each corresponding to an actor. 
These operations could easily be implemented 
without referencing other Mentat objects. In 
general a Mentat object operation may be 
implemented using other object operations. In 
this case an elaborated subgraph is 
constructed. 

An operation of a Mentat object is 
invoked by sending a set of messages (tokens) 
to the object, one for each parameter. When 
all of the parameters for a particular 
operation have arrived the corresponding 
actor is enabled and the operation is executed. 
The marshaling of parameters and sending 
them as messages is transparent t o  the 
programmer. 

2.4. The Mentat Language 
One problem facing parallel systems 

designers is how to simplify the writing of 
parallel programs. Proposals range from 
automatic program transformation system 
such as Paraphrase 1251 which extract 
parallelism from sequential programs, to the 
use of side-effect free languages [7,8). to the 
use of languages and systems where the 
programmer must explicitly manage all 
aspects of communication, synchronization, 
and parallelism j26.27’. The problem with 
fully automatic schemes is t ha t  they are best 
suited for detecting small grain parallelism. 
The problem with schemes in which the 
programmer is completely responsible for 
managing the parallel environment is that 
complexity can overwhelm the programmer. 

Mentat provides a compromise solution. 
Programmers are responsible for identifying 
those objects that  are of sufficient 
computational complexity to allow efficient 
parallel execution, and the compiler and run- 
time system are responsible for managing 
parallelism, communication, and 
synchronization. In order t o  exploit these 
capabilities programs must be written in the 
Mentat programming language. Rather than 
create a new programming language, the 
Mentat programming language is an extended 
C+- [4!. A preprocessor takes source code in 
the extended language and automatically 
generates code to  perform run-time data-flow 
detection and macro data-flow graph 
construction. Users specify those object classes 
that are to  be transformed into macro data- 
flow actors. Instances of these classes are used 
normally. The system will automatically 
generate the macro data-flow graphs for the 
program, reducing the programming effort 
required. 

There are five principle extensions t o  the 
C++ language: Mentat classes, the member 
functions create() and destroy(), the return- 
to-future ( rtfl) ) mechanism, the 
se lec t /accept  (guarded) statement, and the 
member function main() for each Mentat 
class. Below we examine each briefly. A more 
complete description of the language can be 
found in [15]. 

2.4.1. Mentat Class Definition 
Mentat classes are the mechanism for 

specifying Mentat actors. Each actor is 
implemented by an operation of a Mentat 
object, and each Mentat object is composed of 
one or more actors. In C--. objects are 
defined by their class. Each class has an 
interface section in which member variables 
and member functions are defined. Sot all 
class objects should be Mentat objects. In 
particular, objects that  do not have a 
sufficiently high communication ratio, i.e., the 
object operations are not computationally 
complex enough, should not be Mentat 
objects. To  provide the programmer a way to 



control the degree of parallelism, Mentat 
allows both standard C++ classes and Mentat 
classes to  be defined. By default, a standard 
C++ class definition defines a standard C++ 
object. Standard C l ~ c  objects and variables 
are contained objects contained in their 
lexically enclosing Mentat class. The 
programmer defines a Mentat class by using 
the keyword MENTA T in the class definition. 
He may specify whether the class is 
PERSISTENT or REGULAR, as in the 
following example. 

PERSISTENT MENTAT class bigmatr ix  

public: 
/ /  private data  and member functions 

vector gaussslim(); 
... more member functions 

I; 
Persistent and regular class definitions 
correspond t o  persistent and regular objects. 

2.4.2. Create and Destroy 
T o  instantiate and destroy instances of 

Mentat objects we have added two new 
reserved member functions for all Mentat 
class objects: create() and destroy(). These 
functions are inherited from the base class 
Mentat and can be overloaded by the 
programmer of the class. The create() 
function is used to instantiate new instances of 
Mentat classes. It takes as parameters user- 
provided initialization information. Create() 
also allows the user the option of specifying 
where the new instance is t o  be instantiated, 
e.g., on a different processor, or on the same 
processor as another Mentat object. Thus, the 
programmer can give the underlying system 
information tha t  will be useful in making 
instantiation decisions and thus influence 
where the new object is actually instantiated. 

2.4.3. Return to Future (rff()) 
The function rtf()  is the Mentat analog 

to  the return() of CT-. Its purpose is to 
allow Mentat member functions (actors) t o  
return a value to the successor nodes in the 
macro data-flow graph in which the member 
function appears. The r t f o  does not, however, 

mark the end of the actor computation. 
Rtf() takes two types of arguments, local 

variables or constants, and subgraphs. Local 
variables must satisfy the same restrictions 
that  apply to  Mentat arguments: i t  must be 
possible to determine their length, and they 
must be contiguous in memory. Subgraphs are 
automatically generated, and their use is 
transparent to the programmer. Returning a 
subgraph using rtf() is the mechanism for 
actor subgraph elaboration. 

The following example illustrates both 
how rtf() is used and how program graphs are 
automatically constructed. The code 
fragment for object operation opl appears in 
Figure 2 .  If ezpression(input) is TRUE, then 
opl  will generate a token containing the value 
5 that  will be forwarded to opl  's successor. In 
this case there is no subgraph elaboration. If. 
on the other hand, ezpression(input) is 
FALSE, then a subgraph will be generated for 
opl  at run-time. The actual subgraph 
generated 'will depend on the value of 
ezpressionflocal-variable). If i t  is TRUE, then 
the subgraph shown in Figure 3 will be 
generated for opl  at run-time. The result of 
the new subgraph will be directed to  the 
successor of o p l .  We would like t o  emphasize 
that the generation of subgraphs is entirely 
transparent t o  the programmer. The 
mechanism used t o  automatically generate 
subgraphs is discussed in more detail in 1151. 

if expression(input) I rtf(5); 
else I 

w=.koperation1(4,5); 
x=B.operationl( w,2); 
if expression( local-variable) 

y=C.operation1(4,w); ' 
else 

y=C.operation l(w:x); 
z=D.operation l(y,w,x); 
rtf(2); 

I .  
I 1  

Figure 2 .  Code for o p l .  
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Figure 3. Subgraph generated at run-time. 

2.4.4. Guards 
The Mentat programming language has a 

select/accept statement that  is similar to the 
ADA 128; select,/accept. Unlike ADA guards, 
Mentat guards may contain the formal 
parameters of the member function being 
guarded and message tag information such as 
the  sender or computation tag. Assignment 
statements are disallowed in guards to  prevent 
side effects. This feature provides the ability 
to selectively receive messages based upon 
their contents and was inspired by PLITS (29;. 

Guards are evaluated in the order of 
their priority. Within a given priority level 
each of the guards is evaluated in some non- 
deterministic order. Each guard is evaluated 
in tu rn  until one of the guards is true; the 
corresponding statement-list for t ha t  guard is 
then executed. When the statement-list 
associated with the guard has been executed. 
control passes to the next statement beyond 
the select. 1 

2.4.5. The Member Function Main()  
The member function main/) is a 

reserved function name for Mentat clzuses. It 
is the initial thread of control for new 
instances of a Mentat class. The function 
body may be any sequence of extended CA+ 
statements. Usually main() will consist of an 
initial select/accept to accept the create call 
for the class, if one exists. Then, once the 

create has been executed, a loop is entered in 
which there is a select statement with an 
accept for each member function of the class. 
If no main() is provided by the programmer 
one will be generated for the class. 

3. The Mentat Virtual Machine 
The Mentat virtual machine is an 

idealized machine for executing macro data- 
flow programs on a variety of hardware 
architectures. The virtual machine presents 
the image of a single logical machine to 
programmers. The virtual machine is a 
three-level abstraction. The highest level is 
very similar to traditional data-flow 
machines. The \ two lower levels of the 
abstraction permit modeling of single CPL 
systems, shared memory m ul t i processers , 
loosely coupled systems (e.g., hypercube), and 
combinations of the three as specific instances 
of the model. Various components of the 
machine are responsible for tasks tha t  support 
token matching, object instantiation, -object 
management, scheduling, communication. and 
actor computation. 

3.1. The System Level 
The highest level of abstraction is the 

system level. The system level of abstraction 
defines an abstract machine tha t  is similar t o  
traditional data-flow hardware architectures. 
There are three components of the 
abstraction: the interconnection network, the 
computation units (called), and the matching 
unit & token store, as shown in Figure 4. The 
three components perform the same functions 
a in traditional architectures. In traditional 
architectures the matching unit matches 
tokens for actors and sends the actors with 
their tokens via the interconnection network 
to the computation units. The computation 
units execute the actor, and return the results 
to the matching unit via the interconnection 
network. The corresponding Mentat virtual 
machine components are described next. 

The global matching unit is a single 
logical entity with two principle functions: 



b 

L 

TOktXl 

Storage 

_j 

Figure 4. System Level of Abstraction. 

first, t o  store state objects, code objects, and 
tokens; second, t o  match tokens and construct 
work units for the computation units. The 
global matching unit matches tokens and 
determines when an actor is ready to  fire. 
Enabled actors, with their tokens and code, 
are packaged into work units. A work unit 
(WV) is a tuple (code, state, actor number, 
token-list). A work unit contains all of the 
information needed by. a,computation unit to 
execute an actor: code; state, and input 
tokens. The work units are sent via the 
interconnection network to an idle 
computation unit. The global matching unit 
receives an initial set of tokens and state 
objects to begin the matching task. Then, as 
computation proceeds, tokens and s ta te  
objects are consumed and new ones are 
received from the computation units. 

The interconnection network provides 
communication services between the 
computation units and the global matching 
unit. At  this level of abstraction all 
computation units are equidistant from the 
global matching unit. The communication is 
error free with guaranteed delivery. 

The computation units (CV) accept work 
units from the global matching unit. perform 
the computation, and send the results back to 
the global matching unit. They are pure 
functional units. The output of a computation 
unit depends solely on the contents of the 

work unit. Thus any computation unit may be 
used to execute any work unit. When a 
computation is complete the computation unit 
constructs a result package and sends it via 
the interconnection network to the global 
matching unit. The result package is a tuple 
(state, token-list). The s ta te  is the new state  
for the actor t ha t  was just  executed. The 
token-list is a list of output  tokens tha t  the 
actor generated. Once the result package has 
been sent the computation unit is ready to  
accept another work unit. 

The problem with the system level of 
abstraction just presented is the centralized 
nature of the global matching unit. All token 
matching, storage, and actor scheduling is 
done by a single entity. If the global matching 
unit (or its communication channels) becomes 
overloaded then there will be idle computation 
units and the performance of the system will 
suffer. In a distributed system such a bottle 
neck is undesirable. Since Mentat is designed 
for distributed systems, this level of 
abstraction is not appropriate. The global 
matching unit should appear to be a single 
entity, but i t  can actually be a distributed 
entity. Further, the machine should take 
advantage of localities. It is much cheaper, for 
instance, t o  send a work unit to some 
computation units t ha t  others. These issues 
provide the motivation for the middle level of 
abstraction. 

3.2. The Processor Level 
The idealized macro data-flow machine 

is as shown in Figure 4. However, in 
distributed systems. the matching unit is 
fragmented, and the cost of communicating 
from a parkicular portion of the matching unit 
t o  different computation units varies. The 
fragmentation of the matching unit is 
accounted for in the processor level of 
abstraction shown in Figure 5. This middle 
level more accurately reflects actual hardware 
configurations likely to  be found in a 
distributed system. 

In the processor level there are man! 
focal matching units (LMUs). Each local 
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Figure 5 .  Intermediate Level of Abstraction. 

matching unit has associated with it one or 
more computation units. The existence of 
more than one associated Computation unit 
could indicate either that  multiple virtual 
computation units are mapped onto a single 
processor, or that  one of the nodes is a shared 
memory maltiprocessor such as the Encore 
Multimax. By definition, it is cheaper in time 
and/or resource use for a local matching unit 
to communicate with its associated 
computation unit(s) than with other 
computation units. 

The function of the global matching unit 
in the system level is actually performed in a 
cooperative manner by the local matching 
units in the  prdcessor level. Thus, in addition 
to sending work units to, and receiving result 
packages from, called, the individual local 
matching units must communicate and 
coordinate with each other. Hence, local 
matching units are more complex than the 
global matching unit. 

. 

3.3. The Local Machine Level 
The lowest level of the abstraction 

consists of the actual implementation of the 
LMlj's. The LMI: itself consists of many 
components: the local message handler, the 
inter-LMC message handler, and the token 
matchers for instantiated and uninstantiated 
objects that  implement the global matching 
unit. The token matcher for un-instantiated 

objects in particular is complicated by the 
distributed nature of the matching problem: 
how can we know where a matching token 
resides, or if i t  has even been generated yet? 
For a more complete description of the LML' 
implementation see 115:. 

4. Statue 
Mentat has been implemented on a ten- 

processor Encore Multimax. The 
implementation consists of two parts, the 
programming support and a virtual machine. 
Implemented Mentat tools include a 
preprocessor that  transforms extended C-- 
programs to  C-+ source or object code and a 
set of library routines accessible t o  the 
preprocessor that  provides an interface to the 
virtual machine. 

The virtual machine executes macro 
data-flow programs that  have been prepared 
using the preprocessor. The  prototype can 
simulate a wide variety of Mentat 
configurations. The number of hosts, the 
number of processors on each host, the 
interconnection topology between hosts, and 
the speed of the communication links can all 
be specified. Thus, one can simulate Mentat  
executing on a hypercube, a mesh, or a single 
shared bus system. 

To demonstrate the performance of 
Mentat we executed Gaussian elimination 
using the partial pivot ing  method as a 
benchmark. Two versions were prepared. The 
first is a serial version written in C and 
executed in a single Unix process. The second 
w s  written for Mentat execution using 
persistent actors. Both programs were run on 
matrices of dimension 100. 200. 300. 400. and 
500. Figure 6 shows the execution times for 
the serial version. and for Mentat configured 
as a 4 LMI- hypercube, a 6 LMY shared bus. 
and an 8 L-ML- hypercube. The Mentat 
versions are clearly superior. particulariy in 
the larger dimensions. The corresponding 
speed-upe are shown in Figure 7. 
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The primary cause of the low speed-ups 
observed in the lower dimensions is the 
relatively high communication ratio, 
particularly in the eight LMU hypercube 
version where the tokens have to travel up to  
three hops. The  communication ratio is also 
affected by the machine overhead and run- 
time graph construction overhead. Both grow 
linearly with the dimension of the matrix 
while the amount of computation is O(n3).  
Thus, as the dimension of the matrix increases 
the communication ratio decreases. 

5. Summary 
In this paper we presented a high level 

overview of the object-oriented macro data- 
flow system called Mentat. We discussed the 
design goals of Mentat. the macro data-flow 
model of computation, future lists, the Mentat 
programming language, and the Mentat 
virtual machine. 

The preliminary results on performance 
of Mentat are encouraging. The next step is to  
develop a full scale Mentat simulator that  
provides accurate timing predictions for large 
numbers of virtual processors. Then, if 
simulation results show continued 
improvement, we will implement Mentat on 
an actual distributed system of SUN'S, IBM's, 
or Macintosh 11's. Such a distributed version 
would prbvide the most convincing evidence of 
the efficacy of the Mentat approach. 

Concurrent with the development of an 
improved simulator an actual application 
should be developed using the Mentat 
language. This is important for two reasons. 
First, since ease of programming is a design 
goal, we must evaluate how difficult Mentat is 
to program for non-specialists. i.e., people not 
involved in the Mentat design. Second, we 
must demonstrate that  Mentat can exploit 
significant parallelism in real-world 
applications. Before any system can move out  
of the lab i t  must be shown to  be useful on 
non-contrived problems. .Thus we must 
implement an actual application-such as ray- 
tracing or a Monte-Carlo simulation. The 
implementation of actual applications would 
realistically demonstrate the effectiveness of 
the Mentat approach. 
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